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Population Growth in Random Media. 
I. Variational Formula and Phase Diagram 

A. Greven t and F. den Hollander 2 

We consider an infinite system of particles on the integer lattice Z that: 
(1)migrate to the right with a random delay, (2) branch along the way 
according to a random law depending on their position (random medium). In 
Part I, the first part of a two-part presentation, the initial configuration has one 
particle at each site. The long-time limit exponential growth rate of the expected 
number of particles at site 0 (local particle density) does not depend on the 
realization of the random medium, but only on the law. It is computed in the 
form of a variational formula that can be solved explicitly. The result reveals 
two phase transitions associated with localization vs. delocalization and survival 
vs. extinction. In earlier work the exponential growth rate of the Cesaro limit of 
the number of particles per site (global particle density) was studied and a 
different variational formula was found, but with similar structure, solution, and 
phases. Combination of the two results reveals an intermediate phase where the 
population globally survives but locally becomes extinct (i.e., dies out on any 
fixed finite set of sites). 

KEY WORDS: Phase transition; variational formula; population growth; 
random medium. 

O. I N T R O D U C T I O N  A N D  M A I N  R E S U L T S  

0.1. M o t i v a t i o n  

This  a n d  the  f o l l o w i n g  p a p e r  a re  pa r t  o f  a series in which  we s tudy  p o p u l a -  

t ion  g r o w t h  in r a n d o m  m e d i a  via  variational techniques. T h e  m o d e l s  tha t  

we c o n s i d e r  a re  o f  the  fo l l owing  type.  Inf in i te ly  m a n y  par t ic les  l ive on  the  

in t ege r  la t t ice  7 / a n d  a re  subjec t  to two  r a n d o m  m e c h a n i s m s :  

1. Pa r t i c l e s  branch a c c o r d i n g  to a site-dependent offspr ing d i s t r ibu-  

t ion  c h o s e n  r a n d o m l y  for  each  site a n d  kep t  f ixed d u r i n g  the  
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evolution. These offspring distributions play the role of the random 
medium. 

2. Particles migrate by jumping to nearest-neighbor sites with site- 
independent probabilities. The migration has a drift. 

We are interested in how the particle density behaves as a function of time 
and space. It turns out that such systems exhibit interesting phase 
transitions as the drift varies, due to the competition between the branching 
and the migration. ~ 

The program of our series of papers is to analytically derive and 
explicitly solve variational formulas describing various aspects of the 
population growth. The value of the variational formula gives the exponen- 
tial growth rate of the particle density, the maximizer provides information 
about the path of descent of a typical particle in the population. From 
these results we extract the phase diagram. 

Part I is a continuation of Baillon et al3 2~ and completes the descrip- 
tion of the phase diagram. In particular, by combining results of both 
papers we establish the existence of an intermediate phase where the 
population globally survives but locally becomes extinct (extreme 
clustering). 

Part II treats the phenomenon of wavefront propagation when the 
initial particle density has a block shape (like a Heaviside function). We 
calculate a speed-dependent growth rate, thereby obtaining a particle 
density profile after suitable scaling of time and space. This profile exhibits 
three phases separated by two characteristic wavefront speeds. In addition, 
its qualitative shape changes as the drift crosses a threshold. 

All effects and phase transitions described are due to the randomness 
of the medium and disappear in the spatially homogeneous situation. 

0.2.  M o d e l  

With each x ~ Z is associated a random probability measure Fx on the 
nonnegative integers N u {0 }, called the offspring distribution at site x. The 
sequence 

F = { F x } x ~  

is i.i.d, with common distribution a. Here F plays the role of the random 
medium. For fixed F, define a discrete-time Markov process (t/n),~> o on 
(N to {0})~, with the interpretation 

t/~(x) = number of particles at site x at time n 
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by specifying its one-step transition mechanism as follows. Given the state 
r/~ at time n: 

1. Each particle is independently replaced by a new generation. The 
size of a new generation descending from a particle at site x has 
distribution F~, i.e., it consists of k new particles with probability 
F~(k) ( k = 0 ,  1,2,..). Also, particles at the same site branch 
independently. 

2. Immediately after creation each new particle at site x inde- 
pendently decides to either stay at x' with probability 1 -  h or to 
jump to x + 1 with probability h. The parameter h e [0, 1 ] is the 
drift and is the same for all x. 

The resulting sequence of particle numbers after steps (1) and (2) make up 
the state t/,,+ 1 at time n + 1. F stays f ixed during the evolution. 

Let 

bx= ~ ~E~(~) (0.1) 
k = o  

denote the mean offspring at site x and let/~ denote the distribution of b x 
induced by ~ (the distribution of Fx). It is assumed that /3 has bounded 
support and strictly positive variance, i.e., 

0 < infb~ < sup b~ < ~v (0.2) 
x x 

We have thus specified the evolution mechanism of our particle 
system. It remains to fix the initial state ~/0- We shall consider the following 
two starting configurations: 

Case I. ~lo(x)= 1 for all x ~  

{10 f~ x ~ 0  
Case II. t/~ = for x > 0 

In case I we expect to find a globally uniform population, while in case II 
we expect to see a wavefront propagation phenomenon. The two cases are 
treated in Parts I and II, respectively of this two part presentation. 

Our analysis will show that our i.i.d, assumption on the random 
medium F is not essential. In fact, the results to be discussed turn out to 
be the same for any stationary ergodic process { b ~ } ~  with marginal /?, 
provided we take into account the entropy of this process. It is very crucial, 
though, that we assume (0.2): we shall see that the phenomena to be 
described would otherwise be absent. 
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In earlier papers we have also considered the situation where the 
migration in step 2 goes both ways, namely particles may jump to the left 
or to the right nearest-neighbor site with probabilities �89 - h )  and �89 + h), 
respectively. This model is considerably more difficult and the analysis of 
the phase diagram is less complete. ~ 

0.3. Local Particle Density and 
Speed-Dependent Growth Rate 

Let E denote the double expectation over the Markov process 01n) 
given F, as well as over F. Let 

dn(x, F) = E(tMx) lr) (0.3) 

denote the average particle density at site x at time n given F. We shall be 
interested in the following two quantities: 

Case I: 2~(0, F ) =  lira 1_ log d~n(0, F) (0.4) 
1 1 ~  oO n 

Case II: 2n(z, F) = lira 1 log d~(LrnJ, F) (0.5) 

i.e., the growth rate at x =  0 for uniform starting configuration and the 
growth rate at x = LznJ for block shape starting configuration. The latter 
is the speed-z growth rate, observed at a site moving at speed T/>0. 
Theorem 1 below shows that the limits in (0.4) and (0.5) exist F-a.s., are 
constant F-a.s., and can be computed in terms of a variational formula 
depending on the two parameters fl and h. To formulate the result, we need 
the following symbols. Let ~ ( N  x suppfl)  denote the set of probability 
measures on the product of ~1 and the support of ft. Let 0e (0 ,  1], 
v e ~ ( N  x supp fl), and i e N, j e  supp ft. Define 

Mo,~ = {v e ~ ( N  x supp fi): ~ iv(i, j) = 0 -1, 
r 

v(i, j)  = fl(j) for all j }  
i 

f(v) = ~ v(i, j)i  log j 
i , j  

io,~(v)=Zv(i , j) log ( ~(i,j) ) 
,,/ \ ~o( i) fl(j) 

(0.6) 

(0.7) 

(0.8) 
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1--0  
I~(O)=O log ({)  + (1-O) log (~_h  ) (0.9) 

7ro(i ) = 0(I - 0) ' -1 (0.10) 

The notation is for the situation where supp/~ is countable. If supp fi is 
continuous, then write integrals for the sums over j and in (0.8) use 
densities with the convention that Io,~(v)= oo when v is not absolutely 
continuous w.r.t, ~0 • 

Theorem 1. F o r h ~ ( O ,  1) 

2'(0, F)=2( f i ,  h; 0) F-a.s. (0.11) 

2It(z, F) = 2(fi, h; v) F-a.s. (0.12) 

wiLth 

,~(/~, h; r) = sup E J ~ ( O )  - I,(0)3 (~ >t 0) (0.13) 

J~(O)=O sup [f(v)-Io,~(v)] (0e(0 ,  1]) (0.14) 
v ~ MO,~ 

The proof is given in Section 1. Incidentally, the proof will show that 
the same speed-z growth rate is observed at site x = [_r,nJ for any T,--+ T 
(i.e., the growth rate only varies on scale n). 

0.4. Solut ion of Var iat ional  Formula 

The variational expressions in Theorem 1 can be solved explicitly. This 
is carried out in Section 2. The following three quantities play a key role in 
the solution: 

I 
h~ = lira r$o 1 + F(r) 

V(r) 
0c = lim - - -  ~o F'(r) 

( r > 0 )  (0.15) 

(0.16) 

(0.17) 

Here M denotes the supremum of suppfl  [recall (0.2)]. Before we 
formulate our main result we list a few technical properties of the function 
F(r) and the constants h~ and 0c. 
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L e m m a  1. 

(i) 
(ii) 

(iii) 

For r > O: 

F(r) is analytic, strictly positive, and strictly decreasing. 

-F(r) /F ' (r)  is strictly positive, strictly increasing, invertible, and 
its inverse is analytic and strictly increasing. 

-F(r) /F'(r)  < 1/[1 + F(r)].  

L e m m a  2, Forallfl:O<~O~<~h~<l: 

(a) hc=O i f f E j f i ( j ) l o g ( 1 - j / M ) = - o o .  

(b) 0~--0 i f f ~ j f l ( j ) ( 1 - j / M ) - ~ =  oo. 

The proof is an elementary calculation and is left to the reader. 
To express our results in a compact form, we introduce two more key 

quantities, r* = r*(fl, h) and O* = O*(fl, h), which are defined as follows: 

h <~ hc: r* = 0  
1 (0.18) 

r* is the unique solution of h = -  h > h~: 

h <~ h~: 

h>hc: 

1 + F(r) 

are 
0_=0. 

9(i, j) = Tcr fl(j) 

with ~*(j) = 1 - (j /M) e -r* and go(i) as in (0.10). 

Corollary 21. (iii) h ~2 ( f i ,  h;0) is continuous and strictly 
decreasing on (0, 1), analytic on (0, he) and (hc, 1), and at the boundary 
points 2(fi, 0; 0) = log M and ~.(fl, 1; 0) = ~ j  fl(j) log j. 

(iv) I fh  c>0 ,  then 

0-~ 2(fl, he+;  0 ) -  2(fl, h ~ - ; O ) = h ~ ( l _ h c )  (0.23) 

0 " = 0  

o* = F ( r * )  (0.19) 
F'(r*) 

In the rest of Part I we consider the uniform starting configuration I from 
Section0.2. For this case the variational formula has the following 
solution: 

T h e o r e m  2 I. (i) The growth rate in (0.11) at the origin is 

.~(fl, h; 0) = log[M(1 - h)] + r* (0.20) 

(ii) The maximizers O=O(fi, h) and ~=f(f l ,  h) in (0.13) and (0.14) 

(0.21) 

(0.22) 
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(v) If l o g M > 0 > Z / f i ( j )  logj ,  then )~(fi, h;0) as function of h 
changes sign at h = h*, the unique solution of 2(fl, h; 0 ) =  0 computable 
from (0.20). 

(vi) h~O(fl, h) is strictly increasing and analytic on (he, 1). 
Moreover, 

Oe<O<h for h~(h~.,1) (0.24) 

and 0 changes from 0 to 0~/> 0 at h = h,.. 

Thus we see that the growth rate and the maximizers display 
interesting behavior as a function of h for fixed ft. The proof is given in 
Section 2. 

0.5. Phase Diagram 

In order to come to a description of the phase diagram, we first dis- 
cuss some implications of Theorem 2I and Corollary 2I for the history of 
the particles. Our treatment here will be somewhat informal. For a rigorous 
proof one would need techniques developed in Baillon et al., ~2) Section 3. 

With each particle at site 0 at time n we can associate its path of 
descent consisting of the positions of all its ancestors at times n - 1 ..... 0. We 
define the typical path of descent of the population at site 0 at time n as 
the path of descent of a particle drawn randomly from this population 
(conditioned on it not being empty), and we shall denote by 

~n An /7 
Z = ( Z , ) , =  o ( Z ;  = O) (0.25) 

its backward displacements relative to site 0. Two important functionals of 
j~,n a r e  

1 -  
0n = - Z~ (0.26) 

n 

1 2." 
- ~ ~i,~x).b_x) (0.27) 

~" 2."+1x=O 
with 

/n(x) = I{0< i~<n: Z7 = x)f (0.28) 

i.e., the empirical drift and the empirical distribution of local times and 
medium. 

In the case of a homogeneous medium (i.e., b x - c o n s t ) ,  it is well 
known that as n ~ co 

On~h a.s. 
(0.29) 

vn ~ ~h • fl in law 
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expressing the fact that asymptotically 2 n looks like the underlying random 
walk with drift h. However, for an inhomogeneous medium the situation is 
quite different. Namely, it turns out that as n ~ oe 

0 n ~ 0  a.s. for h ~ h~. 
(0.30) 

~ n - ~  inlaw for h > h c  

where 0 and ~ are the maximizers of our variational formula (0.13) and 
(0.14). Indeed, the analysis in Section 1 shows that the collection of paths 
with 0 n ~ 0  and ~ , ~ v  has offspring of size exp(n[Of(v)]) and has 
probability exp(-n[OIo,~(v)+Ih(0)]) asymptotically. Therefore as n--, oe 
the main contribution to the average population at site 0 comes from paths 
with 0 = 0 and v = 9, and the growth rate is 

2(/~, h; 0) = 0[ f (~)  - I0,~(9)] - Ih(O) (0.31) 

Thus we see that the variational formula reflects a selection mechanism: the 
population predominantly consists of those particles whose path of descent 
happens to be best adapted to the given environment. The fact that 0 and 
9 are unique implies that there is a notion of optimal path of descent as 
expressed in (0.30). The fact that O vah and ~r  shows that this 
optimal path of descent does not look like the underlying random walk. 

Equations (0.30) and (0.31) are the key to our phase diagram. The 
most interesting behavior occurs when/~ is chosen such that 

J (0.32) 

log M > 0 > ~ /~( j )  log j 
J 

implying that 0 < 0 c < 1 and 0 < h~* < 1. 

(I) Localization vs. Delocalizotion. For h < hc we have 0 = 0, 
meaning that the typical path moves at sublinear speed (localization). On 
the other hand, for h > hc we have 0 > 0, so that the typical path moves at 
linear speed (delocalization). At h = hc the speed makes a jump of size 
0~ > 0. Since 0 < h, the effect of the random medium is to slow down the 
typical path compared to its behavior in the homogeneous medium (see 
Fig. 1 ). 

The fact that 9, ~ ~ for h > h~ provides us with finer information on 
the typical path, e.g., what fraction of time it spends in the level sets of the 
medium. There is no such result for h < hc because at the boundary 0 = 0 
our variational formula degenerates. 
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Fig. 1. 
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The maximizer O(fl, h) as a function of h for fixed fl under the assumption (0.32). 

(11) Surv iva l  vs. Ext inct ion.  For h < h* we have 2(fl, h; 0) > 0 and 
therefore the average populat ion at site 0 grows (survival).  On the other 
hand, for h > h* we have 2(fl, h; 0 ) < 0 ,  so that the populat ion dies out 
(ext inct ion)  (see Fig. 2, lower curve). To  be able to speak of survival for 
h < h*, we should really also establish that 2(fl, h; 0) > 0 implies r/,(0) --, oe 
a.s. (and not  only in expectation) .  We defer this point to a future paper. 

\ 

\ 
\ 

\ 

I 

Fig. 2. The global growth rate p(fl, h) (upper curve) ad the local growth rate 2(fl, h; 0) 
(lower curve) as functions of h for fixed fl under the assumption (0.41). The dashed curve is 
log[M(1 - h)]. The endpoints are p(fi, 1) = log[Y~j fl(j)j] and 2(fl, 1; 0) ~ )7j/3(j) log j. 
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0.6. I n t e r m e d i a t e  P h a s e  

We shall now combine our results with earlier work. In Baillon et al. (2) 
we studied the global particle density at time n defined by 

1 N 
D(t/n, F ) =  lira ~ r/n(x ) (0.33) 

N+~ 2 N +  1 x=-N 

By applying the ergodic theorem, we showed that 

D(qn, F) = E(t/,(0)) a.s. (0.34) 

Thus, the global particle density is the expectation over the medium of the 
local particle density defined in (0.3), i.e., 

D(q~, F) = E(d,(O, F)) a.s. (0.35) 

We derived a variational formula for the global growth rate 

p(/~, h) = lim 1 log D(t/,, F) 
n ~ o 9  n 

(0.36) 

which has the same form as (0.13) and (0.14), but with (0.6)-(0.8) replaced 
by 

M o = { V ~ ( N ) :  ~iv( i )=O 1} (0.37) 
i 

/0(v) = Z  v(i)log (v ( i )  ~ (0.39) 
i , , f r o ( i ) /  

The fact that the two variational formulas turn out to be different is 
noteworthy, as it shows that the global and local structures of the popula- 
tion are controlled by different forces. 

We obtained the solution of the global variational formula using func- 
tional analytic techniques. The striking analogy that we can now draw is 
that the solution is exactly the same as in Theorem 2I and Corollary 2I, but 
with F(r) in (0.15) replaced by 

G(r) = ~ fl(j) (j/M) e - r  (r > 0) (0.40) 
j 1 - (j/M) e-r 

(see Fig. 2, upper curve). The function G(r) has the same properties as 
formulated in Lemma 1 for F(r). 
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Combination of the two explicit solutions with (0.15) and (0.40) 
[recall (0.15)-(0.20)] allows us now to obtain some interesting relations. 
We shall use upper indices g and l to distinguish between the global and 
the local cases. In addition, we strengthen (0.32) to the assumption 

J (0.41) 

log M > O > log [ ~  fl(j) j ]  

to ensure that 0 < 0og < hog < l and 0 < h~ *g < 1. 

Lemma 3. Forr>~0 

G'(r) > 1 + G(r) F ' ( r )  . . . .  > 1 + F(r) (0.42) 
C(r) F(r) 

The proof is elementary; the two inequalities are Lemma l(iii) and its 
analogue for G(r). Lemma 3 immediately leads to a comparison of the key 
quantities: 

T h e o r e m  3. 

g ( i )  0o < t g l O~.=h,.<h C. 

(ii) r *g >1 r *~ with strict inequality iff h > h g. 

(iii) h~ 'g >1 h[  ~ with strict inequality iff p(fi, h g) > O. 

Thus we find that p(fl, h) ~> fl(fi, h; O) with strict inequality iff h > ho g, 
and consequently an intermediate phase iff p(fl, h g) > O: 

(111) Global Survival and Local Extinction. For h ' t <  h <he Tg we 
have p(fi, h) > 0 > 2(fl, h; 0). The population experiences extreme clustering. 
Namely, the density of populated sites decays to zero, but the population 
on these sites grows so fast that even the overall particle density still grows 
(see Fig. 2). 

Finally we offer the following remark. If the restriction ~2i v(i, j)  = fl(j) 
in the set Mo.~ in (0.6) is crossed out, then the local variational formula in 
Theorem 1 can be shown to reduce to the global variational formula in 
Baillon et aL (2) [-recall (0.37) (0.39)]. This can be interpreted as saying that 
the global particle density is carried by parts of the space where the 
random medium has a statistics that is optimal for the growth (and that 
is in general atypical under the law flz). Despite this clear link, we are not 
able to provide an intuitive explanation for the equality in (0.42). 
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1. PROOF OF T H E O R E M  1 

1.1. Local Particle Density As Functional 
of Local Times of Random Walk  

Let 

So=0 ,  S~=XI+ ... +Xn (n~>l) 
(1.1) 

(Xi) i.i.d, with P(Xi = 1 ) = 1 - P(Xi = O) = h 

denote the random walk with drift h that serves as the underlying 
migration process of the particles. Let 

l,(x) = ]{0< i~<n: S~=x}[ (1.2) 

denote its local time at site x up to time n. The following proposition 
expresses d,(x, F) in (0.3) as the expectation of some exponential functional 
of the random sequence {l,(x)}x>~0. Let Ph and Eh denote probability and 
expectation w.r.t. (S,). 

Proposit ion 1. 

d~(x,F)=Eh( 1-[ [bx y]'n~Y)~lo(X- S~)) (1.3) 
y~O 

Proof. From the evolution mechanism of our process (recall steps (1) 
and (2) in Section 0.2) we obtain the following recursion relation: 

E(~l,(x)[r)=(1-h)bxE(~l,_~(x)[F)+hbx_lE(q, l ( X -  1)[F) (1.4) 

[-recall that bx is the mean offspring of a particle at site x by (0.1)]. In the 
notation of (0.3) and with the help of (1.1) this may be rewritten as 

Similarly, 

dn(x,F)=Eh(bx xldn I ( x -X1 ,F) )  (1.5) 

dn l(x-X1,F)=Eh(bx_x~ x2d~ 2 ( x - X I - X z ,  F)) (1.6) 

and hence by iteration 

( 01) dn(x, F) = Eh b~ s~do(x- Sn, F) (1.7) 

Now substitute do(x, F ) =  t/o(x ) and use (1.2) to write the product in terms 
of local times. | 
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From Proposition 1 we obtain the following expressions for the local 
particle densities figuring in (0.4) and (0.5): 

dtn(O, F) = Eh ( yl~>~o [ b_yJt"(Y) ) (1.8) 

dlI(Lvn],F)=Eh( I] [bL,nJ-y]"(Y) l{s,,~L~nj}) (1.9) 
y>~O 

By conditioning on the position of S,, and by using the one-sidedness 
of the random walk, we can turn the above expressions into a form that is 
more appropriate to apply techniques from the theory of large deviations. 
Let 

l(x) = lim ln(X)= j{ i>0:  S~=X}I (1.10) 
n ~ c o  

denote the total local time at site x. 

Proposition 2. 

din(0,  F) = a(0, n, ~o F) 

d~'(L~nJ, F) = 8(L~nl, n, aL~,jF) 

with 

(1.]1) 

(1.12) 

O(Lzn],n,F)= ~. Ph(S,,=x) Eh(x,n,F ) (v~>0) (1.13) 
x>~LznJ 

Eh(x, n, F)=E h ~ l(y)=n (1.14) 
. y = O  

and ay the map defined by (ayF)x = Fy x. 
Proof. Equation (1.8) can be written as in (1.11 and (1.13) with 

Eh(x, n, F)= Eh (y~>~o [by]t"(') Sn= x) (1.15) 

Then note that the r.h.s, equals 

Eh(~I [by] &(y) Sn=x, Sn+1 >x)  
y>~O 

= Eh l(y) = n (1.16) 
0 y=O 

because Sn = x, Sn + l > x implies ~ y  - o l(y) = n and vice versa. Similarly for 
(1.9). | 
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1.2. Large Dev ia t ions  

For a general reference to large-deviation theory we refer the reader to 
the books by Ellis (4) and by Deuschel and Stroock. (5) 

The role of Proposition 2 is that it reduces the proof of Theorem 1 to 
a large-deviation problem for S, and for {/(x)}x~>0. Indeed, first note 

Ph(S,= x )=(n )  hx(1-h) n-x (1.17) 

from which it follows that Ph induces a large-deviation family of 
probability measures for S,/n on [0, 1 ] with rate function 

lim 1 log Ph(S, = [-On])= --Ih(O) (1.18) 
n ---* oo V/ 

with Ih(O) given by (0.9). The same limit is obtained along any sequence 
0n--+ 0, and Ih(O) is bounded and continuous on [-0, 1]. Next write the sum 
in (1.13) as an integral 

~(L~n_J, n, F ) =  fo~ ('On.1 ] d(On) Ph(S. = FOn]) Eh(FOn], n, F) 

+ 1{.~_o)(1- h)n b~ (1.19) 

Here % = Lzn_J/n, and the last term corresponds to the event {S, = 0}. The 
notation LtJ (I-t]) denotes the largest (smallest) integer smaller (larger) 
than or equal to t. We shall prove in Section 1.3 the following result for the 
second factor Eh(rOn ], n, F). 

Proposi t ion  3. For every 0 ~ (0, 1] 

lira I log Eh([-On], n, F) = J~(O) F-a.s. (1.20) 
/ / ~  ct3 n 

with J~(O) given by (0.14). The same limit is obtained along any sequence 
0n--* 0, and Jp(O) is bounded and continuous on (0, 1]. 

Proposition 3 finishes the proof of Theorem 1 as follows. First of all, 
since the limit in (1.20) is F-a.s. constant, the same result holds when F is 
replaced by croF or O-L~njF. Next, we apply Varadhan's theorem (see 
Deuschel and Stroock, (5) Theorem 2.1.10 and Exercise 2.1.20) to (1.19) and 
obtain 

lim 1log ~(LznJ, n, O'L~,2F ) 
n ~  ~x3 n 

= sup [J~(O)--Ih(O)] F-a.s. (1.21) 
0 e ( z ,  1 ]  
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Here we use the continuity of J~(O) on (0, 1] and of Ih(O) on [0, 1]. Since 
J~(0)=logbo and I h ( 0 ) = - l o g ( l - h ) ,  we see that also the last term in 
(1.19) is taken care of. Finally, in Section 2 we shall see that lim0+o J~(O) = 
log M. Since bo ~< M and therefore J~(0) = log bo ~< log M, it follows that we 
may replace It ,  1] by [~, 1 I n ( 0 ,  11 under the supremum and thus 
circumvent the technical problem that (0.14) is not defined for 0=0 .  | 

1,3.  P r o o f  o f  P r o p o s i t i o n  3 

Throughout this section we may assume that 0 > 0. The important fact 
about Eh(x, n, F) in (1.14) is that this quantity is defined entirely in terms 
of the random sequence {l(x)}x>~o, which has the nice property of being 
i.i.d, with a simple common distribution, namely Ph(l(x)=i)=nh(i)= 
h ( 1 - h )  i 1 given by (0.10). This makes it a suitable object for a large- 
deviation analysis. 

First we note that Eh(x, n, F) does not depend on the drift h. Indeed, 
(1.14) is a conditional expectation given Sn=x, Sn+l >x  [recall (1.16)] 
and all paths with this property have the same probability, namely 
h x + i ( 1 - h) n - x. Thus we have 

Eh(F On 7, n, F)= Eo([- On 7, n, F) (1.22) 

Changing the drift from h to 0 [recall (1.1)] will be convenient because it 
allows us to write 

Eo([-On7, n ,F)=exp[o(n)]Eo(C~ 7 [by] l(y) l{z~O,7ol(y)=n} ) (1.23) 
\ y = O  

The error term is just 

Po ~ l (y)=n =poX(Sn=[-On7, Sn+l>[-On7) 
k y = 0  

which is exp[o(n)] because of (1.18) and Io(0 ) = O. 
Next, let 

I N - - 1  

V N = N x~=o (~ (l(x),bx) 1.24) 

denote the empirical distribution over the interval [0, N) of the total local 
time process and the random medium combined. Then we may write for 
the expectation in the r.h.s, of (1.23) the following integral: 

S~o(n) = I. exp[K,f(v)] PO,~o, Ko(VK,, e dv) (1.25) 
~A n 

822/65/5-6-20 
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Here PO, o),N denotes the probability distribution of vzv living on 
~(N x supp/~) and induced by Po at fixed co;f  is given by (0,7); and 

A, = {v 6 ~(IN x supp/~): ~ i v ( i , j ) = L , }  
i , j  

K,, = ton7 + 1 

L .  = n/K.  

(1.26) 

The index co abbreviates the fixed medium co = {bx}x~z. We want to apply 
Varadhan's theorem to the integral in (1.25), but there are three problems 
along the way: 

I. co is fixed. This means that in VN in (1.24) only the first of the 
indices (l(x), bx) is random. 

II. An is a moving set and is not closed (in the weak topology). 

III. f (v)  is not continuous in v (in the weak topology). 

We shall now explain how these problems may be circumvented. For more 
technical details we refer the reader to Greven and den Hollander. (1~ 

Rroblom I. The key observation is that the law of v N is invariant 
under permutations of ~b t u - 1  due to the i.i.d, property of {l(x)}x~>o. ( x J x = 0  
Hence (1.25) is the same for all realizations of the random medium with 
the same empirical distribution over the interval [0, N) defined by 

1 N 1 

VN(CO)=~ ~ 6bx (1.27) 
x = 0  

Next we note that for every 6 > 0 by the strong law of large numbers 

VN((D) ~ B 6 for N sufficiently large co-a,s. 

B a=  { ~ ( s u p p / ~ ) :  ]]v-/~11 46}  
(1.28) 

where II'[I denotes total variation norm. Moreover, our assumption (0.2) 
on the boundedness of supp fl is easily seen to yield the estimate 

IlogSo,(n)-logS,o,(n)l ~<6n log ( M )  

for all co, co' such that VK,(co), ~Ko(co')e Ba 
(1.29) 
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Here we abbreviate 

M = supremum of supp/~ 
(1.30) 

m = infimum of supp fl 

and the estimate follows from (1.25) and (1.26) by noting tha t f (v )  cannot 
vary more than Ln6 log(Mira) because of the restriction Zi, j iv(i, j )=Ln 
[recall (0.7)]. By combining (1.28) and (1.29), we arrive at 

1 
lira l imsup-I logS~(n)-IogS~(n) l=O co-a.s. (1.31) 
8 ~ 0  n ~  n 

where we introduce S~(n) as the integral of S~(n) over the ball B ~ 

S~(n) = f~ S~o(n) P~,Ko(gK,(~) ~ dg) (1.32) 

Here P~,N denotes the probability measure for ,Tu(co ) on ~(supp/~) 
induced by the i.i.d, measure with marginal /~ for ~o. The latter two equa- 
tions are an important step: not only have we shown that the limit is a.s. 
independent of ~o, by combining (1.25) and (1.32) we see that S~(n) is a 
double integral over walk and medium, i.e., an expectation over the double 
process {l(x), b ~ } ~ o ,  which is i.i.d, in both coordinates and therefore 
amenable to large-deviation arguments. 

Problem II. For every e > 0 since Ln ~ 0 - ~ as n -~ 

An ~ A" for n sufficiently large 

A ~ = { v ~ ( N x s u p p f l ) :  ~ iv( i , j )~[O ~ - ~ , 0 - ~ + ~ ] }  (1.33) 
i , j  

One easily sees that f(v) cannot vary more than e log(Mira) over the slab 
A ~ [recall (0.7)]. Therefore, uniformly in 6, since K,,~ On, 

lim lim sup i Ilog S~(n)- log S~"(n)l = 0 (1.34) 
~ 0  n ~ : z c  n 

where 

S~,~(n) = f~00;~ exp[Knf(v)] Po,~,K~ dr) (1.35) 

Here PO,~,N denotes the probability measure for v N on ~ ( N  • supp fl), the 
empirical distribution of the double process, and we introduce the set 

M ~'~ = {v ~ A~: ~7 ~ B ~ } (1.36) O,B 
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We also once more use the remark below (1.23), which guarantees that 
Po, I~,K,(A,)/Po,~,x,(A ~) = exp(c,n) with c~ ~ 0 as e ~ 0. 

Problem III. The final step in the chain of approximations is to 
replace N by the finite set { 1,..., R }. For  simplicity, assume that supp/3 is 
finite. Then it may be shown that uniformly in 6 and 

1 
lim lim sup - Ilog S~'~(n) - l o g  Sa'"R(n)l = 0 (1.37) 

R ~  n ~ c ~  H 

where 

with 

S~'~'R(n) = f M~ R exp[ K , f ( v )  ] Po,~,i~,(v K, e dr) (1.38) 

M~0:~ R = M~:~ c~ ~ (  { 1 ..... R } x supp/3) (1.39) 

For  the proof the reader is referred to Greven and den Hollander, (1) 
Lemma 15. To give just a rough idea: Any realization of {l(x)}x>~o inside 
[0, Kn) with fixed Z K ~  has the same probability because - x = 0  

Po(l(x) = i) = lro(i ) = 0(1 - 0) i -  1. Consider a level set Cb = {X e 7/: b x = b} 
of the medium. For  every site x e Cb C~ [0, K,)  where l(x) > R, remove the 
overshoot in units of size 1R and transport each unit to some x ' e  Cb 
[0, Kn) where l(x')<~ �89 Since Cb has positive density (because supp/3 is 
finite), all the overshoot can be thus truncated and transported within the 
level sets, provided R is sufficiently large so that the number of units 
transported does not exceed ]Cbl. The truncation has no effect on the 
exponential [leaves f (vK.)  invariant]. No more than 

Kn t 

l(x)/1R << K.(O -~ + s)/�89 <~ 4n/R 
x = O  

units are transported and so the truncation has entropy exp(cRn) with 
cR --~0 as R-*  o0. 

Having thus solved Problems I-III,  we are now finally ready to apply 
Varadhan's theorem and complete the proof of Proposition 3. Take the 
integral in (1.38). Since {l(x), b:,}x>~O is i.i.d, with common distribution 
no(i ) fl(j), it follows from Sanov's theorem that PO, fl, N(VN~dV) is a large- 
deviation family on ~ ( N  x supp/3) with rate function Io,~(v) given by (0.8) 
(see Deuschel and Stroock, (5~ Theorem3.2.17). Io,~(v ) is continuous 
in v and ~t~,~,R is a closed slab in N(N x supp/3) equipped with the weak 
topology of measures. These two facts imply, via a standard argument, 
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a~t6,~,R Since f is bounded and that the large-deviation principle holds on "-0,p �9 
aAr6,~,R Varadhan's theorem applied to (1.38) gives continuous on ,,~ 0,8 , 

1 
lim - log S6'~'R(n) = 0 sup [ f (v) - -  Io, p(v)] (1.40) 

It is easily checked that the r.h.s, of (1.40) converges to J~(O) given by 
(0.14) as 6 ~ 0 ,  ~ 0 ,  R - ~  (in this order). The reader is referred to 
Greven and den Hollander, ~) Lemma 20. Tracing back the various steps in 
the argument and recalling (1.31), (1.34), and (1.37), we see that we have 
proved (1.20) in Proposition 3. 

The proof for [supp/3[ infinite follows trivially: approximate /3 by a 
distribution with finite support in total variation norm. Equation (1.20) 
carries over immediately, with J~(O) again given by (0.14). 

The above proof clearly shows that the same limit is obtained in (1.20) 
along any sequence 0~ ~ 0 (perturbation of Kn). The remaining claims, 
namely boundedness and continuity of Jp(O) on (0, 1 ], will follow from our 
analysis in Section 2. | 

2. P R O O F  OF T H E O R E M  21 A N D  C O R O L L A R Y  21 

2.1. Reduct ion  of  Var ia t iona l  Formula  

Our first step is to reduce the variational formula in Theorem 1 to a 
simpler form involving functions 4: supp/3 --. (0, 1 ]. It will be clear later on 
that the reduced variational formula can be understood as a supremum 
over all random walks in random environment, pausing with probability 
1 -  ~(j) and stepping to the right with probability ~(j) on sites where the 
medium takes the value j, i.e., ~(j) plays the role of local drift of the walk. 

Proposi t ion  4. For h~(O, 1) 

2(/3, h; r) = sup J~,~(O) (2.1) 
0~ [z, 1] c~ (0,1] 

with 

Je,,,(o)= J~(o)-1~(o) 

=log[M(1-h)]-Olog(~hh)-oK(O) (2.2) 

K(O) = inf Z/3(J) ~-~(J) 
~eNo,~ j 

x {log (M) + ~(j) log ~(j)+ [1-~(j)] log[1-~(j)]} (2.3) 



1142 Greven and den Hollander 

where 

No,~={~:suppfl__+(O, 1]measurable: ~fl(j)~ l ( j ) =  0 1} (2.4) 
J 

ProoL We start with the observation that the set of v-measures Mo.~ 
in (0.6) may be decomposed as 

Mo, p= U A~,~ (2.5t 
~ e No, l~ 

with 
A~,~={v(i,j)=~(j)#r (2.6) 

1} (2.7/ 
i 

Define 

I0(~) = ff log (~)  + (1 - if) log ( ~ _  0) (2.8) 

rt~(i) = ~(1 -- ~)i , (2.9) 

[compare with (0.9) and (0.10)] and 

(2.1o) H(# [ ~) = Z/~(i) log \Tz(i)J 
i 

Note that for any/~ e B e 

( 01i)) 
#(i) log \Tz;(i)J 

i 

= [~ / t ( i ) J  log ( ~ ) +  [ ~  (i-- 1) #(i)1 log (~-~_ ~) 

1--0 

= - ~  'I0(~) (2.11) 

This allows us now to rewrite (0.14). Indeed, substitute (0.7), (0.8), and 
(0.10) into (0.14) and use (2.11), to get 

J~(O)=O sup sup ~fl(k)  
~ G No,fi lzr B~(J) k j~ supp/~ 

x [~ l(k){logk-Io(~(k))}-H(#~(k)]7~k))] (2.12) 
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The reason for introducing he(j) in (2.12) is that we now can perform the 
second supremum, since 

inf H(#~(j) I ~(j)) = 0 for all j (2.13) 

Indeed, ~(s)�9 and the relative entropy H(/~I~) in (2.10) is non- 
negative and assumes the value zero iff # = ~. Thus we obtain the reduced 
expression 

J~(O)=O sup ~13(j)~ ' ( j ){ logj- Io(~( j ) )}  (2.14) 
~ N o ,  fl j 

From this one easily gets (2.1)-(2.4) by substituting (0.9) and canceling a 
term 0 log 0 + (1 - 0) log(1 - 0) via the property Y',j/?(j) ~ l(j) = 0-1 in 
the definition of No,~. I 

Proposition 4 is an important step because we have performed the 
supremum over the first marginal of v. Now, if supp/~ is finite, then (2.3) 
is a finite variational problem which may be solved by the technique of 
Lagrange multipliers. This will be carried out in Proposition 5 below. If 
supp/~ is infinite, then this technique still provides us with the correct solu- 
tion, but some mathematical justification is needed. We shall not insist on 
this point and refer the reader to Baillon et al., ~2) where the right functional 
analytic tools have been developed. 

Incidentally, note that the above argument gives the maximizer ~ in 
(0.14) as a function of the minimizer ~ in (2.3), namely 

g(i, j) = nr fl(j) (2.15) 

This proves (0.22) once we obtain (. 

2 . 2 .  V a r i a t i o n  o v e r  

A key role is played by the function F(r) in (0.15) and the constant 0 c 
in (0.17). We recall that both 0c=0  and 0c>0  are possible. 

Proposition 5. 0 ~ K(O) is continuous on (0, 1], strictly increasing 
and analytic on (0c, 1), and constant on (0, 0c]. Furthermore, OK(O) is 
convex on (0, 1] and lira0,00K(O)=O. There are two cases 

I. If 0 �9 [0 c, 1 ] c~ (0, 1 ], then (2.3) achieves a minimum in No, p. The 
minimizer is unique and is given by 

~(j) = 1 - J  e -r  (2.16) 
M 
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with r = r(O) the unique solution of 

F(r) 
0 - (2.17) 

F'.(r) 

The minimum is 

r 1 
K(O) = - ~ + log )t~t"r----- 7 (2.18) 

II. If 0 s  (0, 0c), then (2.3) does not achieve a minimum in No,~. The 
minimizer is independent of 0 and is given by ( ( j ) =  1 - j / M ,  which is in 
Nr The minimum is K(O) = K(O~) = log[i /F(0)] .  

Proof. The Lagrangian of (2.3) equals 

~q~(~) = ~ fl(j)~ l(j){log(M)+~(j)log~(j) 
J 

+ [ 1 - ~ ( j ) ]  l o g [ l -  ~(j)] + r }  (2.19) 

with multiplier r. This yields 

0 O~( j )  fl(j)~-z(j) log + l o g [ 1 - ~ ( j ) ] + r  (2.20) 

Hence 

J - - r  ~(j) = 1 - - ~ r e  (2.21) 

The multiplier must be chosen such that 

0 l = ~ ( j ) ~ - l ( j ) = ~ ( j )  l _ ~ r e  r (2.22) 
J J 

One easily checks from (0.15) that the last sum equals -F'(r)/F(r). This 
proves (2.16) and (2.17). Recall Lemma l(ii) in Section0.4 to see that 
r = r(0) is unique and analytic. Substitution of (2.16) into (2.3) yields (2.18) 
via (2.22). This completes case I. 

In case II for 0c > 0 a remarkable phenomenon occurs. Namely, (2.22) 
has no solution when Oe(O, Oc) [recall (0.17) and Lemmal( i i ) ] .  This 
means that the minimum is not achieved in No.~. A closer inspection 
reveals that as 0 crosses 0 c downward the minimizer sticks at its value for 
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0 = 0c. That is, the minimizer is the one for r = 0 in Noc,~ for all 0 ~< 0~. 
Again, for a detailed analysis one would have to use the functional analytic 
tools developed in Baillon et al. (2~ 

The remaining claims follow from (2.17) and (2.18). Namely, 

which gives 

r dr l l  F' (r ) ]  r 
K'(O)=o: dO 0+F---~-J=05 (2.23) 

1 
(OK(O))' = log - -  (2.24) 

F(r) 

l d r  
(OK(O))" = ~ ~ > 0 (2.25) 

Recall Lemma l(ii). One easily checks that lim0;o OK(O)=O using (2.18) 
together with (0.15) and (2.22). | 

2 . 3 .  V a r i a t i o n  o v e r  e 

By combining (2.2) with what we know about K(O) from Proposi- 
tion 5, we get a picture of how Je, h(O) depends on 0. 

P r o p o s i t i o n  6. For every h ~ (0, 1) fixed, 0--+ J~,h(O) is continuous 
and concave on (0, 13, strictly concave and analytic on (0c, 1), and linear 
on (0,0c]. Furthermore, limo+oJl~,h(O)=log[M(1-h)] and J~,h(1)= 
log h + Y~ j fl(j) log j. 

I. If h < he, then Jp, h(O) is strictly decreasing on (0, 13. 

II. If h=hc, then J~,h(O) is constant on (0, 0c] and strictly 
decreasing on (0(., 1]. 

III. If h>hc, then J~,h(O) has strictly positive slope at 0 = 0  and 
achieves a unique maximum at 0 ~ (0c, 1) given by 

0 = F(r) (2.26) 
F'(r) 

with r the unique solution of 

1 
h - - -  (2.27) 

1 + F(r) 

Proof. Most statements are immediate from Proposition 5. The strict 
concavity on (0c, 1) follows from (2.25), because dr/dO>O via (2.17) and 
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Lemma l(ii). The distinction between cases I III lies in the slope of J~,h(O) 
at 0 = 0. Indeed, from (2.2) we have 

O . . . . .  (hF(r(O))~ 
~--~j /~ ,htO~=log~.-~-~ ) (2.28) 

with r(O) obtained from (2.17). The limit 0 1 0  corresponds to r i O  
(irrespective of whether  0 c = 0  or 0 c > 0 )  ad hence the slope at 0 = 0  
changes from positive to negative at h = hc gives by (0.16). F rom (2.28) we 
also read off (2.27) ad (2.26). | 

With Proposi t ion  6 we are now ready to perform the supremum over 
0 in (2.1) and compute  2(fl, h; 0). 

Proo f  o f  Theorem 21. The supremum runs over 0 e (0, 1 ]. Equat ions  
(0.21) and (0.22) are immediate  [-recall (2.15) and (2.21)]. Equat ion  (0.20) 
follows after substi tution of (2.18) into (2.2). | 

Proo f  o f  Corollary 21. Continui ty  and analyticity are immediate via 
Lemma l( i)  and (ii). It is clear that  h --+ 2(/?, h; 0) is strictly decreasing on 
(0, he]. To  see that  it is also strictly decreasing on (h~., 1), differentiate 
(2.27) w.r.t, h and use (2.26) to get 

dr [ l + F ( r ) ]  2 0 
(2.29) 

dh F ' (r )  h(1 - h )  

Hence from (0.18) and (0.19) 

0 1 dr 
0h 2(/~, h; 0) = 1 - ~  + dh 

h - O  
h(1 -h)  

(2.30) 

But 0 < h by combining (2.26) and (2.27) with Lemma l(iii). The change of 
slope of 2(/~, h ;0 )  at h = h c  equals limhlhcdr/dh. Use (2.29) and note that 
limb+he 0 = 0c by (0.16), (0.17), (2.26), and (2.27). The remaining claims are 
obvious. | 
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